Study on morphology and characterization of poly(mphenylene isophtalamide)/multi-walled carbon nanotubes composite nanofibers by electrospinning.


Electrospinning technique is the main method of preparing polymer nanofiber simply, directly and continuously at present. In this work, electrospinning blend solution was prepared by in-situ polymerization using acid-modified multi-walled carbon nanotubes (MWNTs), m-phenylenediamine (MPD) and isophthaloyl chloride (IPC). And then composite nanofibers were prepared by electrospinning. MWNTs played an important role in nanofiber's properties. The effects of MWNTs on the morphology and characterization of the MWNTs/PMIA composite nanofibers were investigated. Scanning electron microscopy (SEM), thermal gravimetric analyzer (TGA), and X-ray diffraction (XRD) were utilized to characterize the MWNTs/PMIA nanofibers morphology and properties. The experimental results indicated that the nanofibers diameter decreased and solution dynamic viscosity increased with increasing MWNTs contents. XRD data demonstrated that PMIA composite nanofibers had the same crystal type as the pure PMIA nanofiber, and crystallinity was improved with increasing MWNTs loading. Transmission electron microscopy (TEM) was used to confirm MWNTs aligned along the axis of composite nanofibers.


    0 Figures and Tables

      Download Full PDF Version (Non-Commercial Use)